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Abstract. Maximum-entropy (ME) approximations to density functions involving logarithmic constraints
are studied. It is proved the existence and uniqueness of the ME approximation constrained by the nor-
malization, the geometric mean and (i) a moment of arbitrary order, or (ii) the logarithmic uncertainty.
A numerical analysis of the accuracy of these ME approximations is carried out for the radial electron
densities of neutral atoms in both position and momentum spaces.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding –
31.15.-p Calculations and mathematical techniques in atomic and molecular physics
(excluding electron correlation calculations)

1 Introduction

The formulation of the Density Functional Theory in the
description of many-fermion systems reveals the impor-
tant role played by the one-particle densities in position
and momentum spaces (to be denoted by ρ(r) and γ(p)
respectively) in the study of many physical properties of
such systems [1]. Here we consider the normalization∫

ρ(r)dr =
∫
γ(p)dp = N, (1)

N being the number of constituents of the system. In this
work, we will restrict ourselves to the description of atomic
systems, for which it is sufficient to deal with the radial
distributions

D(r) ≡ 4πr2ρ(r) (2)

I(p) ≡ 4πp2γ(p) (3)

where ρ(r) and γ(p) are the spherical averages of ρ(r) and
γ(p), respectively.

Due to the difficulties of obtaining information on such
distributions both experimentally and theoretically (even
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for atoms), several techniques have been recently em-
ployed in order to obtain tight approximations to these
functions from the knowledge of very limited information
on them. One of the most powerful approximation tech-
niques employed is the so-called Maximum-Entropy (ME)
technique [2], which provides approximations to the den-
sity at any point in terms of its first few moments, de-
fined as

µn ≡
∫ ∞

0

rnD(r)dr, (4)

νn ≡
∫ ∞

0

pnI(p)dp. (5)

Some of these moments are physically meaningful and/or
experimentally accessible. In atomic systems, for instance,
µ−1 is related to the electron-nucleus attraction energy [3],
µ2 to the diamagnetic susceptibility [4], ν−1 is twice the
height of the peak of the Compton profile [5] and ν2 and ν4

are proportional to the kinetic energy [5] and its relativis-
tic correction due to the mass variation [6], respectively.
Notice that µ0 = ν0 = N for N -fermion systems.

The ME method has been successfully applied by the
authors to the analysis of many relevant atomic densi-
ties, such as the one-particle densities ρ(r) and γ(p) [7],
the electron-pair density h(u) [8], the Compton profile
J(q) [9], form factors [10], reciprocal form factors [11]
and total scattering intensities [12], as well as for more
complex N -electron systems, such as diatomic molecules
[13]. Such ME approximations have been also compared
to other ones obtained by employing different techniques
(i.e. Stieljes-Chebyshev reconstruction, Padé-like approxi-
mations) which involve additionally the knowledge of local
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quantities (e.g. the value of the density and some of its first
derivatives at the origin).

In all the above mentioned works, the information
used as constraints to construct the ME approximations
were only the first moments of the studied distribution. In
the present work, we consider a new type of constraints,
namely the mean logarithmic position (µ

′

0) or momentum
(ν
′
0) (which exponential is the geometric mean of the vari-

able involved [14]) and the logarithmic uncertainties (∆r

and ∆p), i.e.

µ
′

0 ≡
(

dµn
dn

)
n=0

=
∫ ∞

0

(ln r)D(r)dr (6)

ν
′

0 ≡
(

dνn
dn

)
n=0

=
∫ ∞

0

(ln p)I(p)dp (7)

∆r ≡
[
µ0µ

′′

0 − (µ
′

0)2

µ2
0

]1/2

(8)

∆p ≡
[
ν0ν

′′

0 − (ν
′

0)2

ν2
0

]1/2

(9)

where µ
′′

0 ≡
(
d2µn/dn2

)
n=0

=
∫∞

0
(ln r)2D(r)dr and ν

′′

0 ≡(
d2µn/dn2

)
n=0

=
∫∞

0 (ln p)2I(p)dp.
In this sense, it is worthy to mention that the quan-

tities µ
′

0 and µ−2 determine the high-energy behaviour of
the phase shifts ηj for the elastic scattering of electrons
of small angular momentum j in the electrostatic poten-
tial V (r) of a spherically symmetric charge distribution
[15,16] as

ηj ∼ Zα
[

1− ln 2k − 〈ln r〉
4π

−
(
j + 1

2

)2
16πk2

µ−2

]
+O(1/k3)

where Z is the total charge, α the fine-structure constant
and k the wave number.

In Section 2, the ME technique is briefly described,
and in Section 3 some solutions involving logarithmic con-
straints are studied and numerically analyzed for atomic
systems within a Hartree-Fock framework.

2 Maximum-entropy technique

The ME technique deals with the information entropy
functional

SD ≡ −
∫ ∞

0

D(r) lnD(r)dr. (10)

In reference [2] it is proved that, given only partial infor-
mation on a distribution, the least biased density among
all those compatible with the known information is the
one which maximizes the quantity SD. So, the best choice
that one should consider taking into account only the lim-
ited information given is precisely the distribution that,

subjected to those constraints, maximizes SD, which will
be denoted by DME(r). If the given information consists
of one or more expectation values, such as

〈fi(r)〉 =
∫ ∞

0

fi(r)D(r)dr (i = 0, 1, . . . ,M) (11)

the function DME(r) is obtained by solving the variational
equation

δ

[
−
∫ ∞

0

D(r) lnD(r)dr

+
M∑
i=0

λi

(
〈fi(r)〉 −

∫ ∞
0

fi(r)D(r)dr
)]

= 0 (12)

where λ0, λ1, . . . , λM are Lagrange multipliers. The solu-
tion to this equation is given by

DME(r) = exp

{
−1−

M∑
i=0

λifi(r)

}
(13)

where the Lagrange multipliers have to be obtained by
imposing the M + 1 previous constraints:∫ ∞

0

fi(r)DME(r)dr = 〈fi(r)〉 (i = 0, 1, . . . ,M). (14)

Existence and uniqueness of the solution to this problem
have been extensively studied [17–19] when the consid-
ered constraints are integer powers of r, and more pre-
cisely when fi(r) = ri. In this case, the expectation val-
ues of equation (11) are the moments µi of equation (4).
It is known [17–19] that (i) there always exists solution
for M = 1, and (ii) for M = 2, 3, the involved moments
must verify a necessary and sufficient condition for the
existence of ME solution.

However, such kind of existence conditions for the ME
problem associated to other kind of constraints (e.g. loga-
rithmic expectation values) are not known, to the best of
our knowledge. In the next section we center our attention
on two new different problems, the first one concerning the
constraints (N, 〈ln r〉, 〈(ln r)2〉) and the second one asso-
ciated to (N, 〈rα〉, 〈ln r〉) for any α > −3 not necessarily
integer. Existence and uniqueness of ME solution is proved
in both cases.

3 Maximum-entropy solutions

Let us firstly consider the ME problem associated to the
constraints

N =
∫ ∞

0

D(r)dr, (15)

〈ln r〉 =
∫ ∞

0

ln rD(r)dr, (16)

〈(ln r)2〉 =
∫ ∞

0

(ln r)2D(r)dr. (17)
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Then, let us employ equation (13) in order to obtain the
ME distribution, to be denoted by D0

ME, as

D0
ME(r) = exp

{
−1− λ1 − λ2 ln r − λ3(ln r)2

}
. (18)

It is easy to evaluate the quantities

Lk ≡
∫ ∞

0

(ln r)kD0
ME(r)dr

for k = 0, 1, 2. In doing so, we firstly calculate the mo-
ments σk ≡

∫∞
0
rkD0

ME(r)dr of D0
ME(r), giving rise to the

expression

σk =
√

π

λ3
exp

{
−1− λ1 +

(k − λ2 + 1)2

4λ3

}
. (19)

Secondly, we observe that L0 = σ0, L1 = (dσk/dk)k=0 and
L2 =

(
d2σk/dk2

)
k=0

, and imposing the constraints in the
form L0 = N , L1 = 〈ln r〉 and L2 = 〈(ln r)2〉, the following
system of equations on {λ1, λ2, λ3} appears:

N =
√

π

λ3
exp

{
−1− λ1 +

(1− λ2)2

4λ3

}
, (20)

〈ln r〉
N

=
1− λ2

2λ3
, (21)

∆2
r =

1
2λ3
· (22)

The solution to this system provides the desired analytical
expressions for the Lagrange multipliers:

e−1−λ1 =
N√

2π∆r

exp
{
− 〈ln r〉

2

2N2∆2
r

}
, (23)

λ2 = 1− 〈ln r〉
N∆2

r

, (24)

λ3 =
1

2∆2
r

· (25)

Consequently, the density D0
ME of equation (18) in which

the values of the Lagrange multipliers are those given by
equations (23–25) is the ME one under the constraints
(N, 〈ln r〉, 〈(ln r)2〉).

Let us now consider the problem associated to the con-
straints (N, 〈rα〉, 〈ln r〉) with α > −3. Using equation (18),
the ME density obtained in this case (to be denoted by
Dα

ME(r)) is given by the expression

Dα
ME(r) = exp {−1− λ1 − λ2r

α − λ3 ln r} (26)

or equivalently,

Dα
ME(r) = Arm exp{−λrα}. (27)

The moment σk ≡
∫∞

0 rkDα
ME(r)dr of order k of such

distribution is given by

σk =
AΓ

(
m+ k + 1

α

)
|α|λm+k+1

α

(28)

where {A,m, λ} have to be determined from the relations

σ0 = N (29)
σα = 〈rα〉 (30)(

d
dk
σk

)
k=0

= 〈ln r〉 (31)

giving rise to the equations

N =
AΓ

(
m+ 1
α

)
|α|λm+1

α

(32)

〈rα〉
N

=
m+ 1
αλ

(33)

〈ln r〉
N

=
1
α

[
Ψ

(
m+ 1
α

)
− lnλ

]
(34)

with (m+ 1)α > 0 and where the Psi function Ψ(x) is the
logarithmic derivative of Γ (x).

The calculation of the Lagrange multipliers cannot be
performed analytically, essentially due to the appearance
of the function Ψ(x). However, we prove the existence and
uniqueness of solution to this problem. In doing so, let us
insert in equation (34) the expression for λ provided by
equation (33), giving rise to

Ψ

(
m+ 1
α

)
− ln

m+ 1
α

= α
〈ln r〉
N
− ln

〈rα〉
N

(35)

with (m+1)/α > 0. The function g(x) ≡ Ψ(x)−lnx is con-
tinuous for any x > 0, and increases monotonically from
−∞ to 0 when x goes from 0 to ∞. Hence, equation (35)
has one and only one solution if the right handside is non-
positive, which is always true due to the log-convexity of
the quantities 〈rα〉/N . Then, we prove that there exists,
for any α > −3, one and only one value of the Lagrange
multiplier m for which the ME density fulfills the given
constraints.

Let us notice that all the expressions appearing in this
work are independent of the characteristics of the radial
distribution D(r). So, similar relationships for the radial
momentum density I(p) are obtained by only replacing
the quantities 〈rα〉 and 〈(ln r)k〉 by 〈pα〉 and 〈(ln p)k〉.

The main structural characteristic of the ME solutions
Dα

ME and IαME here obtained is unimodality when α ≤ 0,
i.e. they increase from zero to the maximum value, located
at some position rmax (or pmax) to decrease again towards
zero as r (or p) goes to infinity. Such position is given by

rmax =
[

m〈rα〉
(m+ 1)αN

]1/α

(36)

for Dα
ME(r) with α < 0, and by

rmax = exp
{
〈ln r〉
N
−∆2

r

}
(37)

for D0
ME(r), and similarly for pmax.

However, the ME distributions when α > 0 are (i) uni-
modal when m > 0, with rmax (or pmax) given by equa-
tion (36), and (ii) monotonically decreasing when m ≤ 0.
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Fig. 1. ME approximations Dα
ME(r) for α = 0,±1,±2 and Hartree-Fock (HF) radial density in position space D(r) for the

cobalt atom (N = 27). Atomic units are used.

4 Numerical analysis

To have an idea of the accuracy of the above approxi-
mations, let us compare them with the corresponding ra-
dial distributions of electrons (in position and momentum
spaces) for the case of N -electron atomic systems. In do-
ing so, we employ the Hartree-Fock (HF) wavefunctions of
reference [20] to compute the distributions as well as the
associated radial and logarithmic expectation values used
to construct the ME approximations.

In Figure 1, the ME approximations Dα
ME(r) for α =

−2, 1, 0, 1, 2 are compared to the HF radial density D(r)
for the Co atom (N = 27). It is observed the accuracy of
all these approximations (even for the cases divergent at
the origin) having in mind the very limited information in-
volved, i.e. the normalization and two expectation values.
Specially accurate are the densities corresponding to the
cases α = 0, 1, which appart from N and 〈ln r〉, depend
on 〈(ln r)2〉 and 〈r〉, respectively.

In Figure 2, the ME approximations IαME(p) for α =
−2, 1, 0, 1, 2 are compared to the HF radial momentum
density I(p) for the F atom (N = 9). Similar comments
to those in Figure 1 can be done here.

It is also interesting to analyze the value of the parame-
ter m associated to the ME solution given by equation (27)
in both position and momentum spaces. In doing so, let
us observe Figures 3 and 4 corresponding to Dα

ME(r) and
IαME(p), respectively, for all atoms with 1 ≤ N ≤ 54. It is
observed that, in both cases, (i) the value of m depends
very weakly on the number of electrons N , being almost

constant forN ≥ 3 in the cases α < 0 in position space and
α > 0 in momentum space, (ii) the main deviations from
such a constant behavior correspond to N = 1, 2, (iii) shell
structure is strongly displayed, and (iv) the values mα for
α = ±2,±1 verify, for any 1 ≤ N ≤ 54, the relation
m−1 ≤ m−2 ≤ −1 ≤ m2 ≤ m1. Moreover, mα ≤ 2 for any
α = ±2,±1 in both position and momentum spaces, with
only one exception: the value m1 = 2.11 for the Hydrogen
atom (N = 1) in momentum space.

Finally, let us compare the values of the entropies SαD
and SαI associated to the ME approximations Dα

ME(r) and
IαME(p) (for α = −2,−1, 0, 1, 2) with those of the HF radial
densities D(r) and I(p) in neutral atoms with 1 ≤ N ≤ 54.
They are shown in Figures 5 and 6, respectively, where
normalization to 1 instead of N has been considered. It is
observed that the more accurate approximation to the ra-
dial density corresponds to: (i) in position space, α = 0 for
N = 3, 11−14, 19−23, 31−32, 37−43, 49−52 and α = 1
for the rest of the sample here considered; (ii) in momen-
tum space, always α = 0 with the only two exceptions
N = 3, 12 for which α = 1 provides a lower entropy. So,
for any 1 ≤ N ≤ 54 in both position and momentum
spaces, the best ME approximation belongs to α = 0 or
α = 1.

Additionally, Figures 5 and 6 reveal a similar depen-
dence on N for the entropies of the HF density and the
approximations here considered. In Figure 5 it is also ob-
served a strong relation between the values of those en-
tropies and the atomic shell structure.
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Fig. 2. ME approximations IαME(p) for α = 0,±1,±2 and Hartree-Fock (HF) radial density in momentum space I(p) for the
fluor atom (N = 9). Atomic units are used.
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Fig. 3. Value of the Lagrange multiplier m (see Eq. (27)) of the ME approximations Dα
ME(r) for α = ±1,±2 in the atomic

systems with 1 ≤ N ≤ 54. Atomic units are used.
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Fig. 4. Value of the Lagrange multiplier m (see Eq. (27)) of the ME approximations IαME(p) for α = ±1,±2 in the atomic
systems with 1 ≤ N ≤ 54. Atomic units are used.
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Fig. 5. Comparison among the entropies of the normalized-to-unity ME approximations Dα
ME(r) (α = 0,±1,±2) and the

Hartree-Fock (HF) radial density D(r) for atomic systems with 1 ≤ N ≤ 54. Atomic units are used.
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Fig. 6. Comparison among the entropies of the normalized-to-unity ME approximations IαME(p) (α = 0,±1,±2) and the
Hartree-Fock (HF) radial density I(p) for atomic systems with 1 ≤ N ≤ 54. Atomic units are used.

5 Conclusions

There always exists a unique solution to the problem of
finding the Maximum-Entropy distribution constrained by
the normalization, the geometric mean and (i) the loga-
rithmic uncertainty, or (ii) a radial expectation value of
arbitrary order. In the first case, the ME solution is an-
alytically determined, while in the second case the calcu-
lation of only one of the Lagrange multipliers has to be
done numerically.

A numerical study of the ME solutions to the radial
distributions of neutral atoms from hydrogen to xenon, in
both position and momentum spaces, shows up that the
more accurate approximations are those constrained by
the logarithmic uncertainty or by the radial expectation
value of order one (〈r〉 in position space, 〈p〉 in momen-
tum space). In view of the simplicity and the accuracy
of the approximations involving logarithmic constraints
(specially compared to the ones obtained only in terms
of radial expectation values), the experimental determi-
nation of such logarithmic averages appears to be very
interesting. Moreover, from the point of view of the ME
technique, the results we show here reveal that, on im-
proving the ME approximations, it is better to consider
logarithmic constraints than increasing the number of the
radial ones.
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edge partial financial support from DGICYT (Ministerio de
Educación y Ciencia of Spain) under different contracts, and
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European project INTAS-93-219-EXT.

References

1. R.G. Parr, W. Yang, Density-Functional Theory of Atoms
and Molecules (Oxford University Press, New York, 1989).

2. E.T. Jaynes, Phys. Rev. 106, 620 (1957); ibid. 108, 171
(1957).

3. S. Fraga, G. Malli, Many-Electron Systems: Properties and
Interactions (Saunders, Philadelphia, 1968).

4. R. Pucci, N.H. March, J. Chem. Phys. 76, 6091 (1982).
5. I.R. Epstein, Phys. Rev. A 8, 160 (1973).
6. A. Farazdel, W.M. Westgate, A.M. Simas, R.P. Sagar,

V.H. Smith Jr, Int. J. Quantum Chem. 19, 61 (1986).
7. A. Zarzo, J.C. Angulo, J. Antoĺın, R.J. Yáñez, Z. Phys. D
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